Передача электроэнергии на большие расстояния. На какие расстояния эффективно передавать электроэнергию? Передача электроэнергии на расстояние сообщение

В настоящее время электроэнергия вырабатывается преимущественно мощными электростанциями, расположенными далеко от потребителей.

В результате этого возникает необходимость ее передачи на большие расстояния.

В принципе электромагнитную энергию можно передавать от источника к потребителю в диапазоне сверхвысоких частот (СВЧ) и в оптическом диапазоне частот. Именно в таком виде поступает на Землю электромагнитная энергия от Солнца. Спектр излучения Солнца постирается от крайне низких частот,порядка нескольких Герц, до ультрафиолетовых и даже рентгеновских частот. Однако при настоящем уровне развития техники передача больших количеств электроэнергии через свободное пространство практически затруднительна. Поэтому в настоящее время электроэнергия передается по открытым линиям передачи с помощью проводов из алюминия и меди или с помощью экранированных кабелей.

При этом в тех случаях, когда электрическая энергия вырабатывается на относительно низких частотах (50 или 60 Гц), экономически более выгодно передавать ее с помощью высоковольтных линий электропередачи. Как уже отмечалось, в этом случае электромагнитное поле распространяется в диэлектрике, окружающем металлический провод и только незначительная часть энергии проникает в провод и тратится на его нагревание. Для передачи электроэнергии на большие расстояния в настоящее время в основном используются проводящие каналы из металлических алюминиевых или медных проводов. При этом используются как открытые воздушные линии, так и экранированные подземные кабели. В обоих случаях электромагнитная энергия распространяется в диэлектрике, окружающий проводник и только незначительная часть ее (доли процента) теряется на нагрев проводника. При использовании открытых проводников некоторая часть передаваемой энергии излучается в свободное пространство.

Излучаемая в свободное пространство энергия незначительна (доли процента), если длина линии передачи значительно меньше половины длины волны.равной 6000 км при частоте 50 гц и практически линейно возрастает по мере увеличения длины линии передачи.

Как уже отмечалось выше, передача электроэнергии в настоящее время производится с использованием переменного напряжения. Это объясняется возможностью использования для изменения величины переменного напряжения трансформаторов.

Практически электромагнитное поле проникает в металл проводов на глубину несколько сот нанометров. В общем случае величина потерь в проводах зависит от мощности передаваемой электроэнергии, концентрации примесей в металле проводов и температуры. Естественно, чем сильнее нагревается провод,тем больше в нем потери.

Поэтому провода приходится выбирать тем толще, чем больше предаваемая по ним мощность и чем больше в металле проводов примесей. Окисление проводов в влажной среде, приводит к образованию на их поверхности пленки диэлектрика и также естественно увеличивает потери.

Серьезной проблемой при использовании открытых линий передачи на большие расстояние является возрастание потерь, вызванных увеличением излучения электроэнергии в свободное пространство.

Необходимо помнить, что при передаче электроэнергии на постоянном токе (при f =0 Гц), электромагнитное поле также распространяется вдоль проводов со скоростью близкой к скорости света. При этом резко уменьшаются потери энергии на излучение в свободное пространство. Потери энергии в проводах в этом случае практически не уменьшаются. Существенно можно их уменьшить при использовании сверхпроводников. Однако в настоящее время передача электроэнергии с использованием сверхпроводников практически не используется, главным образом из-за того, что их необходимо охлаждать до очень низкой температуры. При этом энергия, требующаяся на охлаждение проводников, превышает потери электроэнергии при передаче ее по экранированным проводам.

Важнейшей задачей, которую приходится постоянно решать энергетическому комплексу, является передача электроэнергии на расстоянии. Поэтому, на пути между электростанцией и потребителями обязательно присутствуют . В большинстве случаев, используются воздушные линии, по которым проходит переменный ток. Энергия вырабатывается с помощью мощных агрегатов, а используется преимущественно слабыми потребителями. Для того, чтобы все они были охвачены электрической энергией, создана мощная и разветвленная структура электрических сетей.

Характеристики электропередачи

Основным показателем, характеризующим электропередачу, является величина ее пропускной способности. Она представляет собой максимальную мощность, которая может передаваться по линиям, при различных ограничивающих условиях.

Прежде всего, это потери при нагреве проводов, потери на корону, условия устойчивости и прочие факторы. Кроме того, передаваемая мощность переменного тока, зависит от напряжения и протяженности . В связи с этим, увеличение напряжения позволяет значительно увеличить пропускную способность передающих линий.

Существуют предельные значения для ЛЭП, связанные с перенапряжением и возможностями изоляции. Чтобы повысить их производительность, производятся конструктивные улучшения, применяются всевозможные компенсирующие устройства.

Назначение и работа компенсирующих устройств

Реактивные параметры и реактивная мощность в линиях электропередачи и у потребителей, компенсируются с помощью специальных устройств. Все эти приборы устанавливаются на промежуточных и конечных подстанциях. Когда происходит передача электроэнергии на расстоянии, с помощью компенсирующих устройств увеличивается пропускная способность линий, улучшаются общие показатели их работы.

Например, реактивная мощность компенсируется электрическими батареями конденсаторов, включаемых поперечным способом. Также, практикуется использование синхронных двигателей и компенсаторов, работающих в перевозбужденном режиме. Таким образом, обеспечивается реактивная мощность потребителей с сохранением желаемого значения напряжения. Одновременно, снижаются потери активной мощности на отдельных участках электрических сетей. С помощью компенсирующих устройств, напряжение в электрических системах может регулироваться автоматически. Места установки и мощность этих устройств определяются расчетным путем, на основании технико-экономических показателей.

Соблюдение всех необходимых условий позволяет осуществлять передачу электроэнергии потребителям с минимальными , в необходимом количестве и с расчетной мощностью.

Процесс передачи электрической энергии уже давно не вызывает у нас удивления. Электричество настолько прочно вошло в нашу жизнь, что представить себе ситуацию, когда его нет, для большинства из нас почти не возможно. За последние десятилетия были проложены миллионы километров проводов. Стоимость работ по вводу их в работу и эксплуатации составляет триллионы рублей. Но зачем строить протяженные ЛЭП, когда можно у каждого потребителя поставить генератор? Есть ли зависимость между длиной ЛЭП и качеством передаваемой электроэнергии? На эти и другие вопросы я и попытаюсь ответить.

Редакция ПМ

Провода и генераторы

Сторонники распределенной генерации полагают, что будущее энергетики состоит в использовании небольших генерирующих устройств каждым потребителем. Можно подумать, что столь привычные нам опоры ЛЭП доживают свои последние деньки. Попробую встать на защиту «старушек» ЛЭП и рассмотреть те плюсы, которые получает энергосистема при строительстве протяженных линий электропередачи.

Во-первых, транспорт электрической энергии напрямую конкурирует с транспортом топлива по железной дороге, нефте- и газопроводам. При их удаленности или отсутствии строительство линий электропередачи является единственным оптимальным решением для энергоснабжения.

Во-вторых, в электротехнике уделяется пристальное внимание резервированию мощности. Согласно правилам проектирования энергосистем, резерв должен обеспечивать работу энергосистемы при потере любого ее элемента. Сейчас этот принцип называется «N-1». Для двух изолированных систем суммарный резерв будет больше, чем для связанных, а меньший резерв — это меньшее количество денег, потраченных на дорогостоящее электрооборудование.

В-третьих, экономия достигается за счет более грамотного управления энергоресурсами. Атомные электростанции, гидроэлектростанции (за исключением малой генерации) по понятным причинам зачастую расположены в отдалении от крупных городов и поселений. Без линий электропередачи «мирный атом» и гидроэлектроэнергия не были бы использованы по их прямому назначению. Разветвленная энергосистема также позволяет оптимизировать загрузку и прочих видов электростанций. Ключ к оптимизации — управление очередью загрузки. Вначале загружаются электростанции с более дешевым производством каждого кВт*ч, затем уже электростанции с более дорогим. Не стоит забывать и о часовых поясах! Когда в Москве пик энергопотребления, в Якутске этот показатель невелик. Отдавая дешевую электроэнергию в разные часовые пояса, мы стабилизируем загрузку генераторов и сводим к минимуму издержки производства электричества.

Не стоит забывать и о конечном потребителе — чем больше у нас возможностей доставить до него электрическую энергию от разных источников, тем меньше вероятность, что когда-нибудь его энергоснабжение прервется.

К минусам построения разветвленной электросети можно отнести: сложное диспетчерское управление, трудную задачу автоматического управления и работы релейной защиты, появление необходимости дополнительного контроля и регулирования частоты передаваемой мощности.

Однако отмеченные недостатки не могут нивелировать положительный эффект от построения разветвленной энергосистемы. Развитие современных систем противоаварийного управления и компьютерных технологий постепенно упрощают процесс диспетчерского управления и увеличивают надежность электросетей.

Постоянный или переменный?

Существует два принципиальных подхода к передаче электроэнергии — использование переменного или постоянного тока. Не вдаваясь в подробности, отметим, что для небольших расстояний гораздо эффективнее использовать переменный ток. Но при передаче электроэнергии на расстояния свыше 300 км практичность использования переменного тока уже не так очевидна.

Связано это в первую очередь с волновыми характеристиками передаваемой электромагнитной волны. Для частоты 50 Гц длина волны составляет примерно 6000 км. Оказывается, что в зависимости от протяженности ЛЭП существуют физические ограничения на передаваемую мощность. Максимум мощности можно передать при длинах ЛЭП порядка 3000 км, что составляет половину длины передаваемой волны. К слову, этот же объем мощности передают по ЛЭП протяженностью в 10 раз меньше. При прочих размерах линий объем мощности может достигать всего лишь половины от данного значения.

В 1968 году в СССР был осуществлен уникальный и пока единственный в мире эксперимент по передаче мощности на расстояние 2858 км. Была собрана искусственно схема передачи, включающая в себя участки Волгоград-Москва-Куйбышев (ныне Самара)-Челябинск-Свердловск (ныне Екатеринбург) на напряжении 500 кВ. Опытным путем были подтверждены теоретические исследования длинных линий.

Из рекордсменов по протяженности можно выделить проложенную в Китае ЛЭП в 2200 км от восточной провинции Хами до города Чженчжоу (столица провинции Хэнань). Стоит отметить, что полный ее ввод в эксплуатацию намечен на 2014 год.

Также не стоит забывать о напряжении линий. Со школы нам знаком закон Джоуля-Ленца P = I? R , который постулирует, что потери электрической энергии зависят от значения электрического тока в проводе и от материала, из которого он изготовлен. Мощность, передаваемая по линиям электропередачи, есть произведение тока на напряжение. Чем выше напряжение, тем меньше ток в проводе и тем самым меньше уровень потерь электроэнергии при передаче. Отсюда следствие: если мы хотим передавать электроэнергию на большие расстояния, необходимо выбирать как можно большее напряжение.

При использовании переменного тока в протяженных ЛЭП возникает ряд технологических проблем. Главная проблема связана с реактивными параметрами линий электропередачи. Емкостное и индуктивное сопротивление проводов оказывают существенное влияние на потери напряжения и мощности при передаче, возникает необходимость поддержания уровня напряжения на должном уровне и компенсации реактивной составляющей, что достаточно ощутимо увеличивает стоимость прокладки километра провода. Высокое напряжение заставляет использовать большее количество гирлянд изоляции, а также накладывает ограничение на сечение провода. Все вместе увеличивает суммарный вес всей конструкции и влечет за собой необходимость использовать более устойчивые и сложные по своей конструкции опоры ЛЭП.

Этих проблем можно избежать, используя линии постоянного тока. Провода, используемые в линиях постоянного тока, дешевле и дольше служат при эксплуатации в связи с отсутствием частичных разрядов в изоляции. Реактивные параметры электропередачи не оказывают существенного влияния на потери. По линиям постоянного тока наиболее эффективно передавать мощность от генераторов, так как возможен выбор оптимальной скорости вращения ротора генератора, что повышает КПД его использования. Минусами использования линий постоянного тока является высокая стоимость выпрямителей, инверторов и различных фильтров для компенсации неизбежно появляющихся высших гармоник при преобразовании переменного тока в постоянный.

Но чем выше длина линии электропередачи, тем эффективнее использовать линии постоянного тока. Существует некоторая критическая длина ЛЭП, которая позволяет оценить целесообразность использования постоянного тока при прочих равных условиях. По данным американских исследователей для кабельных линий эффект ощутим при длинах более 80 км, но величина эта все время уменьшается при развитии технологий и удешевлении необходимых комплектующих.

Самая длинная линия постоянного тока в мире опять же расположена в Китае. Соединяет она ГЭС Сянцзяба (Xiangjiaba Dam) с Шанхаем. Ее длина составляет почти 2000 км при напряжении 800 кВ. Достаточно много линий постоянного тока находится в Европе. В России можно выделить отдельно вставку постоянного тока Выборг, соединяющую Россию и Финляндию, и высоковольтную линию постоянного тока Волгоград-Донбасс протяженностью почти 500 км и напряжением 400 кВ.

Холодные провода

Принципиально новый подход к передаче электрической энергии открывает явление сверхпроводимости. Вспомним, что потери электрической энергии в проводе зависят помимо напряжения еще и от материала провода. Сверхпроводящие материалы обладают почти нулевым сопротивлением, что теоретически позволяет передавать электрическую энергию без потерь на большие расстояния. Минусом использования данной технологии является необходимость постоянного охлаждения линии, что иногда приводит к тому, что стоимость системы охлаждения значительно превышает потери электрической энергии при использовании обычного не сверхпроводимого материала. Типовая конструкция подобной ЛЭП состоит из нескольких контуров: провод, который заключен в кожух с жидким гелием, опоясывающий их кожух из жидкого азота и менее экзотичная тепловая изоляция снаружи. Проектирование таких линий ведется ежедневно, но до практической реализации доходит не всегда. Самым успешным проектом можно считать линию, построенную American Superconductor в Нью-Йорке, а самым амбициозным проектом — ЛЭП в Корее, протяженностью около 3000 км.

Прощайте, провода!

Идеи не использовать провода вообще для передачи электрической энергии возникли уже достаточно давно. Разве не могут вдохновлять опыты, которые проводил Никола Тесла в конце XIX — начале XX века? По свидетельствам его современников, в 1899 году в Колорадо-Спрингс Тесла смог заставить загореться две сотни лампочек без использования каких-либо проводов. К сожалению, записей о его работах почти не осталось, и повторить подобные успехи смогли лишь спустя сотню лет. Технология WiTricity, разработанная профессором MIT Марином Солячичем, позволяет передавать электрическую энергию без использования проводов. Идея заключается в синхронной работе генератора и приемника. При достижении резонанса возбуждаемое переменное магнитное поле излучателем в приемнике преобразуется в электрический ток. В 2007 году был успешно проведен эксперимент подобной передачи электроэнергии на расстояние в несколько метров.

К сожалению, современный уровень развития технологий не позволяет эффективно использовать сверхпроводящие материалы и технологию беспроводной передачи электрической энергии. Линии электропередачи в привычном для нас виде будут еще долго украшать поля и окраины городов, но даже их правильное использование позволяет принести существенную выгоду для развития всей мировой энергетики.

Рассмотрим кратко систему электроснабжения, представляющую из себя группу электротехнических устройств для передачи, преобразования, распределения и потребления электрической энергии. Глава расширит кругозор тех, кто хочет научиться грамотно использовать домашнюю электросеть.

Снабжение электроэнергией осуществляется по стандартным схемам. Например, на рис. 1.4 представлена радиальная однолинейная схема электроснабжения для передачи электроэнергии от понижающей подстанции электростанции до потребителя электроэнергии напряжением 380 В.

От электростанции электроэнергия напряжением 110—750 кВ передается по линиям электропередач (ЛЭП) на главные или районные понижающие подстанции, на которых напряжение снижается до 6—35 кВ. От распределительных устройств это напряжение по воздушным или кабельным ЛЭП передается к трансформаторным подстанциям, расположенным в непосредственной близости от потребителей электрической энергии. На подстанции величина напряжения снижается до 380 В, и по воздушным или кабельным линиям электроэнергия поступает непосредственно к потребителю в доме. При этом линии имеют четвертый (нулевой) провод 0, позволяющий получить фазное напряжение 220 В, а также обеспечивать защиту электроустановок.
Такая схема позволяет передать электроэнергию потребителю с наименьшими потерями. Поэтому на пути от электростанции к потребителям электроэнергия трансформируется с одного напряжения на другое. Упрощенный пример трансформации для небольшого участка энергосистемы показан на рис. 1.5. Зачем применяют высокое напряжение? Расчет сложен, но ответ прост. Для снижения потерь на нагрев проводов при передаче на большие расстояния.

Потери зависят от величины проходящего тока и диаметра проводника, а не приложенного напряжения.

Например:
Допустим, что с электростанции в город, находящийся от нее на расстоянии 100 км, нужно передавать по одной линии 30 МВт. Из-за того, что провода линии имеют электрическое сопротивление, ток их нагревает. Эта теплота рассеивается и не может быть использована. Энергия, затрачиваемая на нагревание, представляет собой потери.

Свести потери к нулю невозможно. Но ограничить их необходимо. Поэтому допустимые потери нормируют, т. е. при расчете проводов линии и выборе ее напряжения исходят из того, чтобы потери не превышали, например, 10% полезной мощности, передаваемой по линии. В нашем примере это 0,1-30 МВт = 3 МВт.

Например:
Если не применять трансформацию, т. е. передавать электроэнергию при напряжении 220 В, то для снижения потерь до заданного значения сечение проводов пришлось бы увеличить примерно до 10 м2. Диаметр такого «провода» превышает 3 м, а масса в пролете составляет сотни тонн.
Применяя трансформацию, т. е. повышая напряжение в линии, а затем, снижая его вблизи расположения потребителей, пользуются другим способом снижения потерь: уменьшают ток в линии. Этот способ весьма эффективен, так как потери пропорциональны квадрату силы тока. Действительно, при повышении напряжения вдвое ток снижается вдвое, а потери уменьшаются в 4 раза. Если напряжение повысить в 100 раз, то потери снизятся в 100 во второй степени, т. е. в 10000 раз.

Например:
В качестве иллюстрации эффективности повышения напряжения укажу, что по линии электропередачи трехфазного переменного тока напряжением 500 кВ передают 1000 МВт на 1000 км.

Линии электропередач

Электрические сети предназначены для передачи и распределения электроэнергии. Они состоят из совокупности подстанций и линий различных напряжений. При электростанциях строят повышающие трансформаторные подстанции, и по линиям электропередачи высокого напряжения передают электроэнергию на большие расстояния. В местах потребления сооружают понижающие трансформаторные подстанции.

Основу электрической сети составляют обычно подземные или воздушные линии электропередачи высокого напряжения. Линии, идущие от трансформаторной подстанции до вводно-распределительных устройств и от них до силовых распределительных пунктов и до групповых щитков, называют питающей сетью. Питающую сеть, как правило, составляют подземные кабельные линии низкого напряжения.

По принципу построения сети разделяются на разомкнутые и замкнутые. В разомкнутую сеть входят линии, идущие к электроприемникам или их группам и получающие питание с одной стороны. Разомкнутая сеть обладает некоторыми недостатками, заключающимися в том, что при аварии в любой точке сети питание всех потребителей за аварийным участком прекращается.

Замкнутая сеть может иметь один, два и более источников питания. Несмотря на ряд преимуществ, замкнутые сети пока не получили большого распространения. По месту прокладки сети бывают наружные и внутренние.

Способы выполнения линий электропередач

Каждому напряжению соответствуют определенные способы выполнения электропроводки. Это объясняется тем, что чем напряжение выше, тем труднее изолировать провода. Например, в квартирах, где напряжение 220 В, проводку выполняют проводами в резиновой или в пластмассовой изоляции. Эти провода просты по устройству и дешевы.

Несравненно сложнее устроен подземный кабель, рассчитанный на несколько киловольт и проложенный под землей между трансформаторами. Кроме повышенных требований к изоляции, он еще должен иметь повышенную механическую прочность и стойкость к коррозии.

Для непосредственного электроснабжения потребителей используются:

♦ воздушные или кабельные ЛЭП напряжением 6 (10) кВ для питания подстанций и высоковольтных потребителей;
♦ кабельные ЛЭП напряжением 380/220 В для питания непосредственно низковольтных электроприемников. Для передачи на расстояние напряжения в десятки и сотни киловольт создаются воздушные линии электропередач. Провода высоко поднимаются над землей, в качестве изоляции используется воздух. Расстояния между проводами рассчитываются в зависимости от напряжения, которое планируется передавать. На рис. 1.6 изображены в одном масштабе опоры для воздушных линий электропередач напряжениями 500, 220, 110, 35 и 10 кВ. Заметьте, как увеличиваются размеры и усложняются конструкции с ростом рабочего напряжения!

Рис. 1.6.

Например:
Опора линии напряжением 500 кВ имеет высоту семиэтажного дома. Высота подвеса проводов 27 м, расстояние между проводами 10,5 м, длина гирлянды изоляторов более 5 м. Высота опор для переходов через реки достигает 70 м. Рассмотрим варианты выполнения ЛЭП подробнее.

Воздушные ЛЭП
Определение .
Воздушной линией электропередачи называют устройство для передачи или распределения электроэнергии по проводам, находящимся на открытом воздухе и прикрепленным при помощи траверс (кронштейнов), изоляторов и арматуры к опорам или инженерным сооружениям.

В соответствии с «Правилами устройства электроустановок» по напряжению воздушные линии делятся на две группы: напряжением до 1000 В и напряжением свыше 1000 В. Для каждой группы линий установлены технические требования их устройства.

Воздушные ЛЭП 10 (6) кВ находят наиболее широкое применение в сельской местности и в небольших городах. Это объясняется их меньшей стоимостью по сравнению с кабельными линиями, меньшей плотностью застройки и т. д.

Для проводки воздушных линий и сетей используют различные провода и тросы. Основное требование, предъявляемое к материалу проводов воздушных линий электропередачи, — малое электрическое сопротивление . Кроме того, материал, применяемый для изготовления проводов, должен обладать достаточной механической прочностью, быть устойчивым к действию влаги и находящихся в воздухе химических веществ.

В настоящее время чаще всего используют провода из алюминия и стали , что позволяет экономить дефицитные цветные металлы (медь) и снижать стоимость проводов. Медные провода применяют на специальных линиях. Алюминий обладает малой механической прочностью, что приводит к увеличению стрелы провеса и, соответственно, к увеличению высоты опор или уменьшению длины пролета. При передаче небольших мощностей электроэнергии на короткие расстояния применение находят стальные провода.

Для изоляции проводов и крепления их к опорам линий электропередач служат линейные изоляторы , которые наряду с электрической должны также обладать и достаточной механической прочностью. В зависимости от способа крепления на опоре различают изоляторы штыревые (их крепят на крюках или штырях) и подвесные (их собирают в гирлянду и крепят к опоре специальной арматурой).

Штыревые изоляторы применяют на линиях электропередач напряжением до 35 кВ. Маркируют их буквами, обозначающими конструкцию и назначение изолятора, и числами, указывающими рабочее напряжение. На воздушных линиях 400 В используют штыревые изоляторы ТФ, ШС, ШФ. Буквы в условных обозначениях изоляторов обозначают следующее: Т — телеграфный; Ф — фарфоровый; С — стеклянный; ШС — штыревой стеклянный; ШФ — штыревой фарфоровый.

Штыревые изоляторы применяют для подвешивания сравнительно легких проводов, при этом в зависимости от условий трассы используются различные типы крепления проводов. Провод на промежуточных опорах укрепляют обычно на головке штыревых изоляторов, а на угловых и анкерных опорах— на шейке изоляторов. На угловых опорах провод располагают с наружной стороны изолятора по отношению к углу поворота линии.

Подвесные изоляторы применяют на воздушных линиях 35 кВ и выше. Они состоят из фарфоровой или стеклянной тарелки (изолирующая деталь), шапки из ковкого чугуна и стержня. Конструкция гнезда шапки и головки стержня обеспечивает сферическое шарнирное соединение изоляторов при комплектовании гирлянд. Гирлянды собирают и подвешивают к опорам и тем самым обеспечивают необходимую изоляцию проводов. Количество изоляторов в гирлянде зависит от напряжения линии и типа изоляторов.

Материалом для вязки алюминиевого провода к изолятору служит алюминиевая проволока, а для стальных проводов— мягкая стальная. При вязке проводов выполняют обычно одинарное крепление, двойное же крепление применяют в населенной местности и при повышенных нагрузках. Перед вязкой заготовляют проволоку нужной длины (не менее 300 мм).

Головную вязку выполняют двумя вязальными проволоками разной длины. Эти проволоки закрепляют на шейке изолятора, скручивая между собой. Концами более короткой проволоки обвивают провод и плотно притягивают четыре-пять раз вокруг провода. Концы другой проволоки, более длинные, накладывают на головку изолятора накрест через провод четыре-пять раз.

Для выполнения боковой вязки берут одну проволоку, кладут ее на шейку изолятора и оборачивают вокруг шейки и провода так, чтобы один ее конец прошел над проводом и загнулся сверху вниз, а второй — снизу вверх. Оба конца проволоки выводят вперед и снова оборачивают их вокруг шейки изолятора с проводом, поменяв местами относительно провода.

После этого провод плотно притягивают к шейке изолятора и обматывают концы вязальной проволоки вокруг провода с противоположных сторон изолятора шесть-восемь раз. Во избежание повреждения алюминиевых проводов место вязки иногда обматывают алюминиевой лентой. Изгибать провод на изоляторе сильным натяжением вязальной проволоки не разрешается.

Вязку проводов выполняют вручную, используя монтерские пассатижи. Особое внимание обращают при этом на плотность прилегания вязальной проволоки к проводу и на положение концов вязальной проволоки (они не должны торчать). Штыревые изоляторы крепят к опорам на стальных крюках или штырях. Крюки ввертывают непосредственно в деревянные опоры, а штыри устанавливают на металлических, железобетонных или деревянных траверсах. Для крепления изоляторов на крюках и штырях используют переходные полиэтиленовые колпачки. Разогретый колпачок плотно надвигают на штырь до упора, после этого на него навинчивают изолятор.

Провода подвешиваются на железобетонных или деревянных опорах при помощи подвесных или штыревых изоляторов. Для воздушных ЛЭП используются неизолированные . Исключением являются вводы в здания — изолированные провода, протягиваемые от опоры ЛЭП к изоляторам, укрепленным на крюках непосредственно на здании.

Внимание!
Наименьшая допустимая высота расположения нижнего крюка на опоре (от уровня земли) составляет: в ЛЭП напряжением до 1000 В для промежуточных опор от 7 м, для переходных опор — 8,5 м; в ЛЭП напряжением более 1000 В высота расположения нижнего крюка для промежуточных опор составляет 8,5 м, для угловых (анкерных) опор — 8,35 м.

Наименьшие допустимые проводов воздушных ЛЭП напряжением более 1000 В, выбираемые по условиям механической прочности с учетом возможной толщины их обледенения, приведены в табл. 1.1.

Минимально допустимые значения проводов возжушныхЛЭП напряжением более 1000 В
Таблица 1.1

Воздушных ЛЭП напряжением до 1000 В и до 10 кВ и их опор до объектов представлены в табл. 1.2.

Таблица 1.2

В продолжение темы:
Планирование 

И . Два предложения — для заемщиков даже , но ставки уже выше. Выдача наличными или на карту. Для начала парочка советов: Обращайтесь в знакомый банк . Ниже всего ставки банки...

Новые статьи
/
Популярные